Part Number Hot Search : 
T37107 BM6031B NCE4060K TPS40 41500 A6B273 DTA123EE LH28F
Product Description
Full Text Search
 

To Download TCA440 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 GSG
Gunter Semiconductor GmbH
TCA440
EDITION 09/00
Integrated AM Circuit for frequencies up to 30 MHz
For inquiry please contact : China Tel: 0086-755-3200442 Fax: 0086-755-3355520 Hong Kong Tel : 00852-26190748 Fax: 00852-24948080 e-mail sales@gsg-asia.com
Edition 09/00
AM - Receiver Circuit
Description
The TCA440/T is an efficient bipolar monolithic circuit to apply in battery - powered or mains operated radio receivers up to 30 MHz. It contains controlled RF stage, mixer, separated oscillator and regulated multistage IF amplifier.
Features
* symmetrical structured circuitry * controlled RF prestage * multiplicative balanced mixer, separated oscillator * very well implemented large - signal characteristic begins already from 4.5 V supply voltage * terminals for indicating instrument * controlled IF amplifier implementing 60 dB control range * external demodulator (diode) * wide range of supply voltage between 4.5 and 15 V
Package
TCA440 * DIP 16
19.4 0.2 1.27 1.40 6.4 +0.2 - 0.1
5.1
3.5 - 0.5
+1.0
0.51
3.6
+0.2 - 0.1
0.98
2.50
0.47 0.12
0.25
M
0.27 -0.07
+0.09
7.55 7.9 . . . 9.7 16 15 14 13 12 11 10 9
1
2
3
4
5
6
7
8
09/00
1
1.35 0.1
TCA440 T * SOP 16
2.00
9.9 0.1
6.0 0.2 3.9 0.1
+ 0.1 0.05
0...8
0.15 -
0.15 0.3 1.27 0.42 + 0.07 - 0.06 0.25
M
0.7
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
Pin Configuration
1 2 3 4 5 6 7 8 RF prestage, input 1 RF prestage, input 2 RF control amplifier input oscillator circuit pin 1 oscillator circuit pin 2 oscillator circuit pin 3 IF output ground 9 10 11 12 13 14 15 16 input IF control amplifier indicator output IF control amplifier IF blocking input lF amplifier IF blocking supply voltage mixer output 1 mixer output 2
Block Diagram
IF REQUIRED
VCC
3
16 3.5V
14 3.5V STABILISATION
HF - CIRCUIT 1 PRESTAGE MIXER 1st IF STAGE 2nd IF STAGE 3rd IF STAGE 4th IF STAGE 7 AF
2
6 5 4 OSCILLATOR IF GAIN CONTROL
8
15
12
11
13
10
9
VCC VCC
IF FILTER
TUNING INDICATOR
2
0.19 +
0.06
09/00 TCA440/T
Functional Description
It contains several function units, which enable designing and assembling of efficient AM tuners. Caused by internal voltage stabilization characteristics are rather independent from supply voltage. The RF input signal reaches via a controllable and overdriving proof preselector stage a balanced mixer. By means of a RF - signal generated by a separated oscillator the input signal is transported into IF. Multiplicative mixing causes only few harmonic content. Gain control is carried out by means of two separated feedback control loops for preselector stage and IF amplifier. By these a loop bandwidth of approximately 100 dB is obtained. The control voltage of the IF - amplifier can be used to drive a moving - coil instrument (field strength indicator). The IF amplifier consists of 4 amplifier stages, the first, second and third can be controlled. The bandwidth of the IF amplifier is approximately 2 MHz and on that account sufficient for usual IF frequencies in the AM range of approximately 460 kHz. The symmetrical arrangement of the entire circuitry guarantees well oscillating. The bridge of the mixer avoids direct breakdown.
Absolute Maximum Ratings
min Supply voltage Junction temperature Ambient operating temperature Storage temperature Total thermal resistance VCC Tj Ta Ts Rthja -15 -40 4.5
max 15.0 150 80 125 120
unit V C C C K/W
Recommended Operational Conditions
min Supply voltage Ambient operating temperature VCC Ta 4.5 -10
max 15 70
unit V C
09/00 TCA440/T
3
Characteristics
refer to application examples, fi = 1 MHz, fosc = 1.455 kHz, flF = 455 kHz, VCC = 9 V, fm = 1 kHz, m = 0.8, voltages refer to ground, Ta = 20 to 25 C, unless specified otherwise
min Current and voltage supply (no RF signal) Supply voltage Current consumption V14-8 = 4.5 V V14-8 = 9 V V14-8= 15 V Entire receiver RF level variation with VNF = 6 dB with VNF = 10 dB NF output voltages (symmetrically measured at 1-2) ViHF = 20 V, m = 0.8 ViHF = 1 mV, m = 0.8 ViHF = 500 mV, m = 0.8 ViHF = 20 V, m = 0.3 ViHF = 1 mV, m = 0.3 ViHF = 500 mV, m = 0.3 RF input sensitivity measured at 60 , m = 0.3, RG = 540 signal-to-noise ratio S + N/N = 6 dB S + N/N = 26 dB S + N/N = 58 dB Maximum RF input voltage (THD = 10 %) Total harmonic distortion VHF = 500 mV VHF = 30 mV RF part Input frequency range Output frequency f|F = fosc - fiHF Control range
typ
max
unit
V14-8
4.5
9
15
V
I14 I14 I14
7 10.5 12
16
mA mA mA
VRF VRF
65 80
dB dB
VNF(rms) VNF(rms) VNF(rms) VNF(rms) VNF(rms) VNF(rms)
60 100
140 260 350 50 100 130 560
mV mV mV mV mV mV
ViRF ViRF ViRF ViHF
1 7 1 1.5
V V mV V
THD THD
4.5 2.8
10 8
% %
fiHF
0
50
MHz
fIF GV
455 38
kHz dB
4
09/00 TCA440/T
min IF suppression between 1 - 2 and 15 RF input impedance unbalanced coupling ViHFmax ViHFmin balanced coupling ViHFmax ViHFmin Mixer output impedance (pin 15 or 16) Steepness IF part Input frequency range Control range filF = 455 kHz, VNF = 10 dB Start of control (ViIF / VNF = 10 dB / 3 dB) maximum IF input voltage (THDNF = 10 %) NF output voltage applied to 60 VZF = 30 V VZF = 3 mV VZF = 3 mV; m = 0.3 IF input impedance (unbanlanced coupling) IF output impedance (pin 7) filF GV 0 alF
typ 20
max
unit dB
Zi Zi Zi Zi
2 II 5 2.2 II 1.5 4.5 4.5 II 1.5
kIIpF kIIpF k kIIpF
Zo SHF
250 II 4.5 28
kIIpF mS
2 62
MHz dB
VctrlF VilFmax
140 200
V mV
VNF(rms) VNF(rms) VNF(rms)
50 200 70
mV mV mV
ZilF ZO
3 II 3 200 II 8
kllpF kIIpF
Indication instrument
Recommended indication instruments: 500 A (Ri = 800 ) 300 A (Ri = 1.5 k) For indication a voltage source of 600 m V(EMF) and an internal source impedance of 400 is available.
09/00 TCA440/T
5
Dependences
TCA 440 / T S = f ( Vosc ) S = I15 /V1;2 VCC = 9V; 5V fIF = 455 kHz fi = 1 MHz; V3 = 0V 9V 500 5V 20 400 5V 300 9V
40 S ( mS )
800 V10 ( mV )
TCA 440 / T V10 = f ( V9 ) VCC = parameter R6 = 1.5 k
30
600
10
200 100 0 100 200 300 400 500 V9 ( mV ) 800
0 10 1
10 2
10 3 V osc ( mV )
TCA 440 / T 500 V3 ( mV ) V3 = f ( VgoHF ) VCC = parameter fi = 1 MHz 500 V3 ( mV )
TCA 440 / T V3 = f ( VgoHF ) VCC = parameter fi = 1 MHz 9V 5V
400
400
300 9V 5V 200
300
200
100
100
0
10 2
10 3
10 4
VgoHF ( V )
10 6
0
10 2
10 3
10 4
VgoHF ( V )
10 6
6
09/00 TCA440/T
VAF ( mV )
TCA 440 / T VAF = f ( ViIF ) V3 = parameter fIF = 455 kHz m = 0.8; fm = 1 kHz 9V
THD ( % )
TCA 440 / T THD = f ( ViIF ) fIF = 455 kHz m = 0.8; fm = 1 kHz
400
8 5V 6
300
200 4 5V 100 2 9V
0
0 10 1 10 2 10 3 10 4 ViIF ( V ) 10 7 10 2 10 3 10 4 ViIF ( V ) 10 6
V10 ( mV )
TCA 440 / T V9 ( mV ) V10 = f ( VgoHF ) VCC = parameter fi = 1 MHz 800
TCA 440 / T V9 = f ( ViIF ) VCC = parameter fIF = 455 kHz
9V 5V
500
400 9V 5V 300
600
400 200
200 100
0
10 0
10 1
10 2
10 3
10 4 V
10 goHF (V)
6
0
10 1
10 2
10 3
10 4
10 5
10 6 V
iIF
(V)
7
09/00 TCA440/T
ICC ( mA)
TCA 440 / T ICC = f ( VCC ) VgoHF = 0 400 VAF (mV)
TCA 440 / T VAF = f ( VgoHF ) VCC = parameter fIF = 455 kHz m = 0.8; fm = 1 kHz
9V
18
5V
300 16
14 200 12
10
100
8
6 5 6 7 8 9 10 11 12 V (V) 15 CC
0
10 0 10 1 10 2 10 3 10 4 10 5 V 10 8 goHF (V)
TCA 440 / T VAF ( mV ) VAF = f ( VgoHF ) VCC = parameter fIF = 455 kHz fm = 1 kHz; m = 0.8 9V 5V 8 THD ( % ) 400
TCA 440 / T THD = f ( VogHF) VCC = parameter fIF = 455 kHz fm = 1 kHz; m = 0.8
300
6 200 5V 4
100 2
9V
0
10 0
10 1
10 2
10 3
10 4
VgoHF (V)
10 6
0
10 0
10 1
10 2
VgoHF (mV)
10 3
8
09/00 TCA440/T
80 S+N (dB) N TCA 440 / T V10 (mV) S+N = f (P ) gmax N VCC = 9 V fi = 1 MHz fm = 1 kHz; m = 0.3 Rg = parameter 500 TCA 440 / T V10 = f ( ViIF ) VCC = parameter fIF = 455 kHz m = 0.8; fm = 1 kHz 5V 9V
60
400
50 300 40 1 k 4.7 k 30 250 200
30
20 Pgmax= 10 V2go 4Rg 100
0 10 -9
0 10 -7 10 -5 10- 3 10 -1 10 0 10 1 Pgmax(W) 10 1 10 2 10 3 10 4 V (V) 10 6 iIF
800 V3 ( mV ) TCA 440 / T HFgain = f ( V3 ) VCC = parameter V15 = 50 mV const. fiHF = 1 MHz 5V 9V
800 V9 ( mV ) TCA 440 / T IFgain = f ( V9 ) VCC = parameter VAF = 200 mV const. fiIF = 455 kHz fm = 1 kHz; m = 0.8 5V 9V
600
600
400
400
200
200
0 0 10 20 30 50 40 HFgain (dB)
0 0 10 20 30 40 50 60 IFgain (dB)
9
09/00 TCA440/T
V7 ( mV )
TCA 440 / T V7 = f ( V9 ) 9V ViIF = 100 V fi = 455 kHz VCC = parameter
V15 ( mV )
800
TCA 440 / T V15 = f ( V3 ) VCC = parameter VgoHF = 700 V fi = 1 MHz 9V
40
600
30 5V 400 5V 20
200 10
0 0 200 400 600 V9 (mV) 800
0 0 100 200 300 400 V3 (mV)
Application Examples * TCA 440
VCC Fi2 Rp2 W1 b S6 12 15 14 C8 1.5n C11 100n C14 10n R9 60 C10 4.7 VIF
D2 C13 10n S4 S2
Fi4 W2 C12 W1 1.5n S5
C9 10n W2 R6 1.5k a
Fi1 C13 S3 330 W1a W2 W1b C12 100n
16 4
10
5 6 R 2
TCA 440
A 7 Fi3
D1
x
Rp3 C5 W 1.5n R5 12k C6 3.3n
C7 4.7
VAF
VgoHF
~ ~
1 3 R1 C2 1.8k C1 20 R2 8.2k 100n C3 C4 100n 4.7 S1 8 11 13 9 R4 39k
R3 100
25 RG 100
10
09/00 TCA440/T
* TCA440 T
+VCC 100n
+50% -20%
47 50%
W Rp2 1.5k
2%
1.5n
W 10n
+50% -20%
2.5%
S2
16 4 S3
2.5%
10
12
15 14
W1a 330p W1 R
100n
+50% -20%
5 6 2
TCA 440 T
A 7 Rp3 1.5n
2%
4.7
x
W
50%
VgoHF
~ ~
1 3
2%
12k
3.3n
+50% -20%
8
11
13
9
2.5%
VAF
1.8k S1 8.2k 100n
+50% -20%
100 2%
39k 2%
25 RG 100
20
5%
100n
+50% -20%
20%
4.7
50%
Application Hints
The PCB is to arrange such that there are maximum ground lines (ground area) voltage supply has to be blocked to ground by a capacitor of 10...100 nF in order to avoid distortions. Blocking should be as close as possible to the circuit. The RF circuit has to layout such that 150 mV(rms) oscillator voltage are applied to pin 5. Symmetrically applying an external oscillator is possible to pin 4 or pin 5. The unused input must be connected to ground via capacitor and in the same time be connected to supply voltage at pin 6. It is recommendable to profide off earth connections 1 and 3, because in this way common - mode interferences more effectively can be suppessed. Single - sided capacitive control of pin 1 and 2 is possible, the unused input must be connected to ground via capacitor. Mixer outputs 15 and 16 can be used equivalently. Load resistances of the mixer (IF selection) at pin 15 respectively pin 16 should run to approximately 7 k. To avoid saturation of the multiplier the maximum peak voltage occuring during operation should not exceed the level (VCC - 3 V) IF response to voltage from pin 15 respectively pin 16 to pin 12 should be approximately - 18 dB that the control characteristics of IF - and RF - part optimally be matched. Peak voltage at pin 7 occuring during operation should not exceed 2 V that the IF output does not go into saturation. All the RF bypass capacitors should amount to 100 nF. Sufficient decoupling of wavemagnet and oscillator coil is to be taken into consideration. All components and parts must be carefully proportioned in order to obtain optimum wise characteristics. Wavemagnets applied should so much mass as possible. The transformation ratio of the input circuitry should run to 10...12. In order to improve RF response characteristic a RF preselector can be additionally preceded or the wavemagnet can be tighty coupled by means of an emitter follower impedance transformer. Improvement of signal - to - noise ratio at average input voltages can be obtained by delayed control of the RF part. Control should be start at approximately 1...2 mV.


▲Up To Search▲   

 
Price & Availability of TCA440

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X